Search results for "Amyloid-like spherulite"

showing 3 items of 3 documents

Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites

2022

AbstractAmyloid protein aggregates are not only associated with neurodegenerative diseases and may also occur as unwanted by-products in protein-based therapeutics. Surfactants are often employed to stabilize protein formulations and reduce the risk of aggregation. However, surfactants alter protein-protein interactions and may thus modulate the physicochemical characteristics of any aggregates formed. Human insulin aggregation was induced at low pH in the presence of varying concentrations of the surfactant polysorbate 80. Various spectroscopic and imaging methods were used to study the aggregation kinetics, as well as structure and morphology of the formed aggregates. Molecular dynamics s…

Amyloid-like Spherulites Fluorescence Lifetime Imaging Aggregate Stability Polysorbate 80 Protein FormulationsAmyloidMorphology (linguistics)AmyloidChemistryInsulinmedicine.medical_treatmentIntermolecular forcePolysorbatesPolyvinyl alcoholSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsSurface-Active Agentschemistry.chemical_compoundMolecular dynamicsColloid and Surface ChemistryPulmonary surfactantCritical micelle concentrationmedicineBiophysicsHumansInsulinMicelles
researchProduct

Corrigendum to “Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites” [J. Colloid Interface Sci. 606…

2023

Amyloid-like Spherulites Fluorescence Lifetime Imaging Aggregate Stability Polysorbate 80 Protein FormulationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

The route to protein aggregate superstructures: Particulates and amyloid-like spherulites.

2015

AbstractDepending on external conditions, native proteins may change their structure and undergo different association routes leading to a large scale polymorphism of the aggregates. This feature has been widely observed but is not fully understood yet. This review focuses on morphologies, physico-chemical properties and mechanisms of formation of amyloid structures and protein superstructures. In particular, the main focus will be on protein particulates and amyloid-like spherulites, briefly summarizing possible experimental methods of analysis. Moreover, we will highlight the role of protein conformational changes and dominant forces in driving association together with their connection w…

Models MolecularAmyloidAmyloid Superstructures Protein aggregation spectroscopyProtein superstructureProtein ConformationBiophysicsNanotechnologyProtein aggregationProtein particulateBiochemistryProtein Aggregation PathologicalProtein AggregatesX-Ray DiffractionStructural BiologyElectrostaticsGeneticsHumansMolecular BiologyAmyloid likeAmyloid-like spheruliteChemistryCell BiologyConformational changeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Microscopy Fluorescence MultiphotonModels ChemicalAggregate structureThermodynamicsExperimental methodsProtein aggregationFEBS letters
researchProduct